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Event-Symmetry for Superstrings
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I apply the principle of event-symmetry to simple string models and discuss how
these lead to the conviction that multiple quantization is linked to dimension. It
may be that string theory has to be formulated in the absence of space-time, which
will then emerge as a derived property of the dynamics. Another interpretation
of the event-symmetri c approach which embodies this is that instantons are
fundamental. Just as solitons may be dual to fundamental particles, instantons
may be dual to space-time events. Event-symmet ry is then dual to instanton
statistics. In that case a unification between particle statistics and gauge symmetry
follows on naturally from the principle of event-symmetry. I build algebras which
represent symmetries of superstring theories extending event-symmetry, but which
are also isomorphic to an algebra of creation and annihilation operators for strings
of fermionic partons.

1. ALGEBRAIC STRING THEORY

Although great strides have been taken toward an understanding of

nonperturbat ive string theory, there is still little progress toward a formulation

which shows manifest general covariance. In previous work I have tackled
the issue by employing the principle of event-symmetry as a means of incorpo-

rating topology change. Space-time is regarded as a discrete set of events

with the permutation group on the events being contained in the universal

symmetry of physics. The symmetric group on events trivially contains the

diffeomorphism group over any topology (Gibbs, 1996).
It may be that string theory has to be formulated in the absence of space-

time, which will then emerge as a derived property of the dynamics. Another

interpretation of the event-symmetric approach which embodies this is that

instantons are fundamental. Just as solitons may be dual to fundamental

particles, instantons may be dual to space-time events or topons (Finkelstein

et al., 1997). Event-symmetry is then dual to instanton statistics. In that case
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a unification between particle statistics and gauge symmetry follows naturally

from the principle of event-symmetry. It is encouraging that this predicted

unification now appears in the matrix model of M-theory (Banks et al., 1997).

The final string theory may be founded on a mixture of geometry,

topology, and algebra. The dual theory origins of string theory hide a clue

to an underlying algebraic nature. In dual theories the s-channel and t-channel

amplitudes are supposed to be equal. At tree level, in terms of Feynman

diagrams this means that

This diagram could also be distorted to look like

This figure is familiar to many mathematicians, who recognize it as a diagram-

matic representation of the associative law,

D 5 (AB)C 5 A (BC )

In developing an algebraic string theory the first step would be to define

creation and annihilation operators for strings analogous to Dirac’ s operators

for bosonic and fermionic particles. It might be possible to do this if strings

are described as composites of particles like a string of beads. The creation

and annihilation operators can then be strings of ordinary bosonic or fer-

mionic operators.
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2. DISCRETE STRING ALGEBRAS

I have previously defined an infinite-dimensional Lie superalgebra for

discrete strings which includes event-symmetry (Gibbs, 1996). By an isomor-

phism which pairs off space-time events and rotates 45 deg in the complex
plane of each pair, it is possible to define the desired algebra. The base

elements of the algebra consist of an ordered sequence of fermion creation

and annihilation operators bi b *i linked together by arrows which define an

arbitrary permutation. A typical element would look like

These elements can be multiplied associatively by concatenating them

together, but an additional set of relations is enforced which reflect the

anticommutation relations of the creation and annihilation operators. They

are defined schematically as follows:

Notice that when a creation operator is exchanged with its annihilation partner

there is an interaction between the strings. These are partial relations which

can be embedded into relations involving complete elements of the algebra.

When closed loops which include no operators appear they are identified

with unity,
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This example shows a cyclic relation on a loop of two operators. The arrows

can be joined differently to give another relation,

which is an anticommutation relation for loops of single operators.

By applying these relations repeatedly, it is possible to reorder the

operators in any string so that they are reduced to a canonical form of products

and sums of ordered cycles. A more convenient notation can be introduced

in which an ordered cycle is indicated as follows (where a, b, c represent

the creation and annihilation operators):

We can generate cyclic relations for loops of any length and graded commuta-

tion relations between any pair of strings by repeatedly applying the exchange

relations for adjacent pairs of operators. Those relations map the interactions

between strings.

The algebra has a Z2 grading given by the parity of the length of

string and it is therefore possible to construct an infinite dimensional Lie-

superalgebra using the graded commutator. The algebra may thus be interpre-

ted as both an algebra of creation and annihilation operators and as the

supersymmetry algebra of discrete strings.

3. SUPERSYMMETRY LADDER

The next stage of the algebraic string theory program is to construct a
ladder operation which takes us from one supersymmetry algebra to another

one. Starting from the one-dimensional string supersymmetry constructed in

the previous section, the ladder operator will take us up to a symmetry of

two-dimensional membranes. Further steps take us up to higher dimensional

p-brane algebras.

We start with a Lie algebra whose elements satisfy the Jacobi relation,

[[A,B],C ] 1 [[B,C ],A] 1 [[C,A],B] 5 0

A new algebra is constructed by stringing these elements in a sequence and
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attaching them with an orientated string passing through each one like before.

A difference introduced this time is that the string is allowed to have trivalent

branches and we must factor out the following relations:

The crossing lines do not (yet) indicate that the lines are knotted. It does not

matter which goes over the other.

When we check the result of combining the interchanges of three consec-

utive elements using the commutation relation above, we find that the result

is consistent with the Jacobi relation provided we also apply the following

associativity relation

and the coassociativity relation

In addition a relationship is used to remove closed loops.

This process defines a new algebra like before except that now we start from

any Lie algebra and create a new associative algebra. A new Lie algebra is

then defined using the commutators of the algebra as the Lie product.



1248 Gibbs

This construction generalizes easily to Lie superalgebras using graded

commutators and graded Jacobi relations. Thus we have a ladder operator

which maps one superalgebra to a new one. This ladder operator will be
signified by Q. Thus if A is a Lie superalgebra, then Q(A ) is another.

In the case where we start with the discrete string superalgebra the loops

can be visualized as circling the new network. These can then be interpreted

as sections of a branching string world sheet. The new algebra is therefore

a symmetry for string world sheets or membranes. Application of the ladder

operator increases the dimension of the structures each time.
The universal enveloping algebra of the original Lie superalgebra is iso-

morphic to a subalgebra of the higher dimensional one. That is the subalgebra

formed by simply looping each element to itself (the loop-removing relation is

needed to establish this). That is, there is a mapping from U(A ) into Q(A )

Up: U(A ) j Q(A )

Furthermore , there is a homomorphism from the higher algebra to the universal

enveloping algebra below, which is defined by removing the string connections:

Down: Q(A ) ® U(A )

It is possible to apply the ladder operator any number n times, giving the
algebra Qn(A ). Since the old algebra is contained in the new, it is also possible

to define an algebra Q ` (A ) generated by an infinite number of applications

of the ladder operator, which then contains all the lower ones. More precisely,

Q ` (A ) is the universal algebra generated from the algebras Qn(A ), n 5 0,

. . . , ` , modulo the identification X 5 Up(X ) for all elements X of the algebra.

The algebra B 5 Q ` (A ) has the property that applying the ladder operator
generates a new one which is isomorphic to the original,

Q(B) . B

This raises an interesting question. Starting from a given algebra, is it possible

that after only a finite number of applications of the ladder operator, one

always arrives at the most complete algebra? Further steps may just create
algebras isomorphic to the previous one. This is certainly the case for the

algebras B, which can be generated as above, but in the general case it is

an open question.

4. MULTIPLE QUANTIZATION

I would like to propose an interpretation of what the above construction

means. The network of connections which appear in the construction of the

ladder operator Q could be interpreted as Feynman diagrams. In that case Q
can be interpreted as the process of quantization. Here quantization does not
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just mean a deformation in the sense that a quantum group is a deformation of

a Lie group. It means the process of deriving a quantum theory from a classical

one as outlined by Dirac using canonical quantization or by Feynman using
path integrals.

The application of Q many times is then multiple quantization and

suggests a connection with multiple quantization and ur-theory as studied by

von WeizsaÈ cker and his collaborators (GoÈ rnitz et al., 1992; Lyre, 1996; see

also Finkelstein et al., 1997). Ur-theory starts with bits of information, which

are quantized to give the group SU(2). This group should be further quantized
multiple times to construct a unified theory of physics.

If this interpretation is correct, it also suggests a link between quantiza-

tion and dimension. The ladder operator Q produces p-brane structures of

one higher dimension each time it is applied. It is also quite natural to think

of quantization as an operation which generates an extra dimension. Although

4-dimensional classical dynamics is only an approximation to the real 4-
dimensional quantum physics, the 3-dimensional kinematic classical state is

still preserved in the full quantum theory as the basis of the Hilbert space

of states. In quantum field theory we do not usually think of the time dimension

as being generated by quantization. It is just the dynamics of the fields in

space-time which are generated. However, in quantum gravity, where the
structure of space-time is itself part of the dynamics, it is natural to regard

time as being generated by quantization. Since the spatial dimensions are to

be treated the same as the time dimension according to relativity, it is also

natural to look to multiple quantization as a mechanism for constructing the

dynamics of space-time from more basic foundations.

String theorists have become expert at forming lower dimensional theories
from higher dimensional ones by compactification of some of the dimensions.

Their difficulty is that they do not have a rigorous foundation for the higher

dimensional superstring and p-brane theories they begin with. I suggest that

quantization is the operation that can take string theories back up the dimensional

ladder. It has been observed that the first-quantized membrane of M-theory in

11 dimensions is the second-quantized string in 10 dimensions (Townsend, 1996).
It may be that in general a k-times quantized theory in n dimensions is a (k 1 1)-

times quantized theory in n 2 1 dimensions. Unlimited multiple quantization

may be the way to understanding classical/quantum duality (Duff, 1994).

5. FRACTIONAL PARTONS AND KNOTS

The above superstring symmetry construction is all very well, except

that strings are not made from discrete fermionic partons. They are defined

as continuous loops, but at the same time they may be topological objects

which can be determined by discrete points. To try to capture this algebraically
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it may be necessary to envisage a string as being made from discrete partons

with fractional statistics like anyons. Such partons may be repeatedly subdi-

vided into partons with smaller fractional statistics until a continuous limit

is found. If strings are truly topological, an infinite sequence of subdivisions

may not be necessary. A finite discretization may be sufficient to describe

any particular interaction.

When fractional statistics are introduced the links will have to be replaced

by knots, and the supersymmetry algebras will need to be quantized. Now

we are using the word quantization in the sense of the deformation which

is used to construct quantum groups, but this may be related to multiple

quantization in a way that is not yet clear.

The use of braided structures will also resolve other problems which

are inherent in the use of event-symmetric space-time. If the symmetric group

acting on space-time events were part of universal symmetry then it is hard

to see how parity could not be conserved, since a mirror reflection of space-

time is just a permutation of events. Furthermore, event-symmetry could be

used to unravel topological solitons which are so important in string theories,

but which depend on the topology of space-time. These difficulties might be

resolved if the symmetric group is replaced with the braid group acting on

space-time events, especially if these events are tied together with strings

which cannot pass through each other.

Motivated by these thoughts, it is natural to seek some kind of deformation

of the fermionic string algebra replacing the sign factors in the exchange rela-

tions with some general q-parameter. It is also natural to replace the loops which

connect the partons with knots. In doing so, we immediately hit upon a fortuitous

coincidence. The construction of invariant knot polynomials makesuse of Skein

relations which are similar to those we have already used, e.g.,

This is the relation which defines the HOMFLY polynomial. Combining this

with the algebra previously constructed suggests something like
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The special case where there is only one event is related to the HOMFLY

polynomial, while the Lie superalgebra previously defined corresponds to

the case q 5 i and z 5 2i with the sense in which two strings cross being
disregarded. To completely define an algebra, these relations can be embedded

in knotted links.

However, the generalisation of the quantization operator Q to strings of

braided partons is not straightforward and will be left for future research. To

know how to proceed correctly, it is probably necessary to understand the

construction in more basic algebraic terms than the combinatorial form in
which it is presented above. Further advances may be made using the mathe-

matics of n-category theory. It is thought that n-categories are related to

physics in n dimensions (Baez and Dolan, 1995). It is already known that

certain 2-categories are applicable to the physics of the string worldsheet. It

is natural to conjecture that ( p 1 1)-categories are similarly useful for p-

brane world volumes. If the link between multiple quantization and dimension
is also correct, then quantization must be defined as a constructor from an

n-category to an (n 1 1)-category which can be applied recursively.

6. CONCLUSIONS

As an initial step toward a purely algebraic formulation of superstring

theories I have defined algebras which correspond to both the symmetries
and the creation and annihilation operators for strings of discrete fermionic

partons. The results suggest a duality between space-time events and

instantons as well as a role for multiple quantization in generating space-

time dimensions. These are consistent with features of nonperturbative

string theories.

It is anticipated that a full algebraic theory will be expressed in the
language of n-category theory. The central problem will be to define algebraic

quantization as an operator from n-categories to (n 1 1)-categories. The

universal theory may be described by an V -category which is isomorphic to

its image under quantization.

It is possible that remnants of the symmetries defined here may already

lie hidden in the matrix models of M-theory and string theories.
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